在汽车轻量化的过程中,使用塑料来减轻汽车重量仍然是制造商的一项重要计划。一般塑料的比重为0.9~1.5,纤维增强复合材料比重也不会超过2,而金属材料中,A3钢的比重为7.6、黄铜为8.4、铝为2.7,这使得塑料成为现阶段实现汽车减重的主要手段之一。目前,无论是外装饰件、内装饰件,塑料用量都在不断地增加。并且随着工程塑料综合性能的不断提高,发动机周边、塑料车窗、车门、骨架甚至更多的汽车关键部件都开始使用塑料。
帝斯曼:可媲美PEEK 的新型PPA材料
帝斯曼在2016年K展上正式推出了这款可在某些领域媲美PEEK 的新材料,ForTii全球业务经理Konraad Dullaert曾表示,“ForTii Ace材料的目标应用领域包括动力系统、传动系统、底盘和热管理应用等。同时,受益于ForTii Ace的各项优异性能,许多采用压铸设计的工业应用也可使用ForTii Ace作为金属替代材料。”ForTii® Ace是一种基于4T化学的聚邻苯二甲酰胺(PPA),具有一系列优异的机械、热学及化学性能,适用于高温条件下对长期强度有要求的应用领域。ForTii Ace的玻璃转化温度为160℃,显著高于其他聚邻苯二甲酰胺材料,包括现有的ForTii各等级产品,比PA66至少高出80℃。ForTii Ace甚至比PEEK更能耐受各种汽车油脂、化学物质等。
目前市场上替代汽车金属压铸件的热塑性塑料,大多数在应用于125℃以上的温度时,机械性能会大幅度的下降。而ForTii Ace不会,凭借较高的玻璃转化温度以及结晶度,ForTii Ace的机械性能和耐热老化性均优于那些基于聚酰胺6T、9T和10T的聚邻苯二甲酰胺竞争产品。可以说,ForTii Ace是唯一一款芳香族化合物重量比超过50%的聚邻苯二甲酰胺产品 。
索尔维:高性能聚合物助力高能效、减排、轻量化
Teknor Apex公司生产的两种新型玻璃纤维增强型聚酰胺化合物,在注塑汽车发动机舱零配件(如发动机盖)中表现出卓越的阻燃性和优异的热稳定性。
Chemlon® 904-13 GVNH和204-13 GVNH 是玻璃纤维尼龙化合物,卤素含量低,在厚度仅有0.8 毫米(约 0.031 英寸)的情况下通过了垂直燃烧测试,符合UL-94 V-0标准。传统的卤代化合物只有通过添加高度阻燃物和增效剂才能达到这种程度的阻燃性,而这会导致注塑困难、表面光滑度差并且增加产品密度。而相比之下,新型Chemlon化合物可以制作出更光滑的表面,产品密度也比传统产品小15%,并且可以快速注塑成具有长流道或薄壁的零件。
Teknor Apex公司生产的两种新型玻璃纤维增强型聚酰胺化合物,在注塑汽车发动机舱零配件(如发动机盖)中表现出卓越的阻燃性和优异的热稳定性。
Chemlon® 904-13 GVNH和204-13 GVNH 是玻璃纤维尼龙化合物,卤素含量低,在厚度仅有0.8 毫米(约 0.031 英寸)的情况下通过了垂直燃烧测试,符合UL-94 V-0标准。传统的卤代化合物只有通过添加高度阻燃物和增效剂才能达到这种程度的阻燃性,而这会导致注塑困难、表面光滑度差并且增加产品密度。而相比之下,新型Chemlon化合物可以制作出更光滑的表面,产品密度也比传统产品小15%,并且可以快速注塑成具有长流道或薄壁的零件。
先进的碳纤维复合材料(包括CFRP和CFRTP)给汽车和零部件制造业带来突出优势,可以表现在:
(1)轻量化:汽车轻量化最直接影响的就是节能、加速、制动性能的提升。
(2)安全性:车身轻量化可以使整车的重心下移,提升了汽车操纵稳定性,车辆的运行将更加安全、稳定,具有极佳的能量吸收率,碰撞吸能能力是钢的六到七倍、铝的三到四倍,这进一步保证了汽车行驶的安全性。
(3)舒适度:具有更高的震动阻尼,轻合金需要9秒才能停止震动,2秒就能停止,对于整车NVH(噪声、振动与声振粗糙度)的提升贡献同样很大,会大幅增强汽车行驶的舒适性。
(4)可靠性:具有更高的疲劳强度,钢和铝疲劳强度是抗拉强度的30-50%,可达70-80%,材料疲劳可靠性有较大提升。
(5)提升车身开发水平:可设计性比金属强,因此更易于车身开发的“平台化、模块化、集成化”。车身及金属平台的混合车身结构对于传统汽车车身结构而言,可以做到大大减少零件种类,减少工装投入,缩短开发周期。尤其对于新能源汽车企业,车身不仅可以节约冲压、焊装生产线及模、夹具的投入,减轻固定资产占资配比,优化企业资产配置结构,而且在市场宣传上更具影响力。
纵观奔驰、宝马、奥迪等高端品牌汽车企业在产品线中的应用布局,可以预见CFRTP新材料在汽车上的应用必然成为未来发展方向。
TL 1010 汽车内饰材料燃烧性能