城市环境空气中NOX的监测
根据第一次全国污染源普查公报,我国NOX主要来源于电力行业、机动车尾气和非金属矿物制品业,这三大领域合计排放量占NOX排放总量的83%。由此可见,NOX的总量控制要抓住重点行业和重点区域,构建以防治火电行业排放等为核心的工业NOX防治体系和以防治机动车排放等为核心的生活NOX防治体系。
总体来看,我国城市环境空气中NOX的年均浓度相对稳定、安全。从2013年监测结果看,年均浓度全部达标,且75%以上符合一级标准。就年变化趋势而言,2008年以来,城市环境空气中 NO2的浓度稳中有升,与工业经济增长较快、机动车排放增加等因素有关。从季度变化趋势看,NOx浓度在冬季较高,夏季最低。每年污染最严重的月份集中在11月~次年2月,而6月~8月的NOx浓度最低。
究其原因,冬季气温低,燃煤采暖等加大了NOx排放,同时,冬季大气环境容量最小,NOx在压缩了的大气空间里易发生累积。而大气环境容量在夏季变大,同时,由于盛行南风或东南风,大气环境相对洁净,稀释作用强,因此NOx的污染较轻。
我国城市环境空气中NOX的监测情况与美国具有可比性。美国从1979年开始要求监测环境空气中的NO2,对人口超过100万的城市,最少要布设两个监测点位。其中,一个监测城市内的最高NO2浓度,另一个要求设在NO2排放量最高区域的下风向。2006年完成的回顾性评价结果表明,在全美范围内,NO2浓度值一般远低于标准限值,是相对安全的环境空气质量指标,因此不再提强制监测要求,得到美国环保局批准后,可撤销原设点位。
根据国内外监测数据,城市环境空气中的NOX主要源自化石燃料的燃烧,特别是机动车的普及,推动城市NO2日浓度变化呈“双峰双谷”分布特征。两次峰值分别出现在上午9:00~11:00和夜间19:00~21:00,且夜间峰值高于白天;两次谷值出现在凌晨5:00~7:00和下午15:00~17:00,明显受机动车排放影响。交通早高峰后,NO2不断累积,从7点到11点,浓度不断升高,之后有所回落,下午3~5点达到低谷;随着交通晚高峰到来,NO2浓度又逐渐上升,并在夜间19:00~21:00达到最高值。此后,随着人群夜间活动减少,NO2浓度开始缓慢下降。
完善NOX监测的建议
NOX减排处于非常艰难的胶着状态。一方面,重化工业比重大,结构性污染问题突出,消化存量污染压力大;另一方面,家庭汽车保有量增加,新开工企业为数众多,NOX排放增量依然较大。这也是在很多城市观测到环境空气中NOX浓度呈升高趋势的主要原因。就全国而言,2013年地级及以上城市NO2的年均浓度为0.032mg/m3,较2012年增加了14.3%。
我国一直坚持对SO2和NOX的监测,总体来看,SO2污染减轻,NOX污染有加剧趋势。与此同时,灰霾天气数量增多。由此看来,NOX排放量增加,以及新增挥发性有机物和氨气等的排放,可能引发更为复杂的光化学反应,从而使城市环境空气质量急剧下降。因此,NOx可能是比SO2更敏感的指标,应密切跟踪NOX浓度的变化,并分析其对光化学反应和PM2.5生成的影响。
一是重新确定NOX监测目标。美国1971年就制订了NO2监测标准,但直到1979年才提出监测要求,而且考虑到人口过百万的城市才会出现NO2污染问题,只对此种特大城市才作监测要求。早期的NOX监测主要考虑健康影响,后来同时关注光化学活性。自美国开展NO2监测以来,点位数量一直相对稳定,即使自2006年不再强制要求监测,对NO2的监测也未终止。其原因在于尽管NO2的健康威胁并不大,但O3模型等需要NOX数据,加上公众参与、溯源前驱物等原因,因此仍坚持对NO2的监测。
目前美国保留的对NO2的监测,仍有近一半是针对健康影响的。其中,超过36%的点位特意设在人口密集区。另外,还包括最高浓度区监测、污染点源监测、背景监测、区域传输监测、生物生态影响监测等目的。
从国内监测情况看,环境空气中NO2的浓度并不对健康构成严重威胁。然而,SO2浓度下降、NO2浓度升高后,灰霾污染立即加重,这表明NO2的其他化学或物理效应较强。因此,NO2监测目的设计及监测点位确定,是很有研究价值的。调整NO2监测网络时要综合考虑多种因素,使其既满足健康保护需要,又能达到科研目的。
二是加强点源和减排监测。NOX污染主要来自化石燃料的燃烧,火电、水泥、钢铁烧结、炼焦等工业企业是重要贡献者。要加强针对这些点源的减排并监测其效果。
机动车占NOX排放量的40%~60%。机动车属于近地面排放,对城市环境空气中NO2浓度升高的贡献在70%以上,是环境NOX污染的主要来源。在城市内可观测到,在交通拥堵路段,NO2浓度明显偏高。机动车限行,加强机动车尾气治理,以及改善路网结构等都是防治NOX污染的有效措施。同时,应在典型路段开展定位监测,用以评价控制效果。
三是加强对NOX环境效应的研究。NOX除了直接引起呼吸道疾病,还会产生其他次生环境危害,如其转化为硝酸根离子后,导致酸沉降;作为前驱物,可以使地面臭氧浓度升高;生成细小颗粒物,带来PM2.5污染;沉降到地面后,使水体富营养化等。NOX参与环境化学的机理非常复杂,催化作用明显,应加强相关基础研究,以更好地了解NOX的环境效应,并指导NOX减排工作。