随着建筑物外部及室内装饰材料广泛采用涂饰技术,饰面型防火涂料是一种集装饰和防火为一体的新型涂料品种,在使用过程中存在着性价比、贮存性、耐水性、涂覆处理、透明度和质量方面的问题。当它涂覆于可燃基材表面时,平时可起到一定的装饰作用,一旦发生火灾则能够阻止火势蔓延,达到保护基材,使人们有足够时间离开火场和组织抢救的目的。但是在饰面型防火涂料的质量方面还存在着一些问题,利用纳米阻燃剂提高饰面型防火涂料的性能具有非常重要的理论价值和现实意义。
1.饰面型防火涂料的分类及在使用中存在的问题
1.1饰面型防火涂料的分类
饰面防火涂料按其防火作用特点及组成可分为非膨胀型防火涂料和膨胀型防火涂料两大类。非膨胀型防火涂料又分为两类,即难燃性防火涂料和不燃性防火涂料。难燃性防火涂料即自身难燃,包括乳液性难燃涂料及含阻燃剂的防火涂料。不燃性防火涂料为无机质涂料,配合无机颜料而成的完全不燃性防火涂料,其特点是在发生火灾时,不产生烟及分解气体,耐热性良好,表面硬度高,耐候性优良,易着色,缺点是难以施工,对底材的附着性、柔韧性差。非膨胀防火涂料主要使用三氧化二锑、硼酸盐、改性偏硼酸钡、硅石等阻燃剂。
1.2饰面型防火涂料在使用中存在的问题
a. 应该涂覆的部位未进行涂覆;
b. 涂覆量不足。在对装修工程验收时,经常发现许多木质装修材料未经防火处理,或者只是表面薄薄地涂覆了一层防火涂料,有些甚至连基材的颜色都未能完全覆盖。
2.饰面型防火涂料的阻燃原理
固态物质在空气中燃烧一般可分为3个阶段:
a. 物质受热分解产生可燃性气体产物;
b. 可燃气体在空气中燃烧;
c. 燃烧产生的部分热量使固态物质或熔融态物质继续分解,并使燃烧继续。阻燃机理的目的就是使上述3个阶段中的一个或者数个终止。例如用难燃或不燃的涂料将可燃物表面封闭起来,避免基材与空气接触,就可使可燃物表面变成难燃或不燃的表面。要实现涂层自身的难燃或不燃,可以把阻燃元素连接到有机高聚物分子中去,实现成膜物质的难燃化;或可以添加不燃性添加剂到涂料中去,增强涂料的难燃性;也可以采用不燃性的无机黏合剂作为涂层的成膜物质来实现涂层的不燃性。
2.1非膨胀型防火涂料的阻燃机理
非膨胀型防火涂料主要通过两条途径发挥防火作用:a. 是涂层自身的难燃性或不燃性;b. 在火焰或高温作用下分解释放出不可燃性气体(如水蒸气、氨气、氯化氢、二氧化碳等)以冲淡空气中氧气的浓度,并形成结构致密的不燃性“釉质层”,达到隔绝空气的目的。此过程是吸热反应,能消耗大量的热,有利于降低体系的温度。防火涂料中低密度耐高温的无机物或中空微球材料成膜时形成热导率低的隔热阻燃涂层,起到良好的防火隔热效果。
2.2膨胀型防火涂料的阻燃机理
膨胀型防火涂料成膜后,常温下与普通漆膜无异。但在火焰或高温下,涂层剧烈发泡炭化,形成一个比原涂膜厚几十倍甚至几百倍的难燃的泡沫碳化层。它可以隔绝外界火源对基材的直接加热,起到阻燃作用。涂层炭化膨胀时,涂层厚度增大几十倍甚至上百倍,而涂层的导热系数却在下降,最后通过膨胀炭层传递到基材的热量只有原涂层的几十分之一甚至几百分之一,使基材得以较好的保护。从宏观上看,炭质层的形成对防火作用有4个方面的贡献:
a. 隔断火焰对底材的直接加热;
b. 涂层的软化、熔融、膨胀等物理变化及聚合物、填料、助剂的分解、蒸发和炭化等化学作用将吸收大量的热量;
c. 隔绝底材和空气的接触;
④分解出的不燃性气体能冲淡空气中氧气的浓度。在防火涂料中,通常膨胀型防火涂料的防火性能比非膨胀型防火性能优异。
3.纳米阻燃剂的优点
研究中发现,有些纳米材料具有阻止燃烧的功能,如果将它们作为阻燃剂添加到可燃材料中,可以改变这些可燃材料的燃烧性能,使其成为难燃烧材料。
3.1纳米超细粉阻燃材料
阻燃剂在高分子材料加工过程中的重要助剂之一,如果采用纳米技术对高分子材料进行阻燃处理,可以实现难燃性和自息性。目前,使用的阻燃剂大多数为无机阻燃剂,它们包括锑系阻燃剂、铝系阻燃剂、磷系阻燃剂和硼系阻燃剂等。由于这些阻燃剂添加到聚合物中,会引起聚合物的加工工艺及产品性能发生改变,特别是对模塑产品、挤型产品和薄膜产品的表面光洁度影响较大,故需要使所有添加型无机阻燃剂的粒度超细化。像目前使用最多的一种添加型阻燃剂三氧化二锑,其颗粒大小和形态对塑料制品和纺织织物的性能和阻燃效果影响非常大。粒度是三氧化二锑的重要指标,只有当三氧化二锑的粒度处于纳米量级时才会使其本身具有较大的比表面积,对织物的渗透性大,黏附力高,具有很强的耐洗牢度,阻燃效果也非常明显。
超细化的阻燃剂可以改善材料的力学性能,减少阻燃剂的用量,满足工艺要求。
纳米级三氧化二锑阻燃材料由于其粒度的变小具有特殊的延展性能,在阻燃性能方面比微米级三氧化二锑有了数量级的提高。尤其重要的是由于纳米级三氧化二锑粒子直径小于化纤纤维的直径,有可能加入到化纤原料母粒中,这样纺丝后在化纤中均匀分布阻燃材料,从而使得纤维本身具有高效阻燃性。
3.2阻燃纳米复合材料
尽管使用超细阻燃剂能有效地提高聚合物的阻燃性能,但也存在一些问题,如不能有效控制有毒气体的释放及大量烟雾的生成,添加阻燃剂后会影响聚合物的机械性能,还会造成一定的环境影响。因此,研究并使用聚合物/层状无机物纳米复合材料将能同时满足上述要求并具有较好的阻燃性能。纳米复合材料实际上是将材料中的一个或多个以纳米尺寸或分子水平均匀分散在另一组分的基体中。据国外资料报道,由于这样处理后的材料存在超细的尺寸,所以其性质比其相应的宏观或微米级复合材料均有较大的改善。目前在实验室已经制备出纳米级环氧树脂、聚苯乙烯、聚丙烯、尼龙-6、丙烯酸等复合材料。如尼龙-6/蒙脱土(4.2%)纳米复合材料的拉伸强度比纯尼龙-6增强50%,玻璃化温度比纯尼龙-6提高约
聚合物/层状无机物纳米复合材料具有比传统填充材料优异得多的力学性能、热性能、阻燃性能、各向异性等。国外已将聚合物/层状无机物纳米复合材料用于制造汽车发动机的配件,并准备应用于飞机内部材料、燃料舱、电子或电气部件、护罩内的结构部件、制动器和轮胎制造等。
4.纳米阻燃剂的制备
纳米阻燃剂多是氧化物(CuO、ZnO、Fe2O3等)和复合化合物,其制备的方法多采用制备纳米粒子的液相法。通常的液相法有:直接沉淀法、溶胶—凝胶法、共沉淀法。此外,还有微波合成法、电弧法等。
4.1直接沉淀法
在金属盐溶液中加入沉淀剂,在一定条件下生成沉淀析出,将阴离子除去,沉淀经洗涤、热分解等处理可制得超细产物。选用不同的沉淀剂可得到不同的沉淀产物,常见的沉淀剂为NH3?H2O、NaOH、(NH4)2CO3、NaCO3、(NH4)
4.2溶胶—凝胶法
易于水解的金属化合物(无机盐或金属醇盐),在某种溶剂中与水发生反应,经过水解与缩聚过程逐渐凝胶化,在经过干燥烧结后处理得到所需材料。如尹荔松等将SbCl3粉晶溶于无水乙醇中,磁力搅拌充分溶解后,往溶液中缓慢滴入去离子水,并不断搅拌即得乳胶状白色沉淀,然后用水多次倾析,并经过滤洗涤,干燥后即得Sb2O3粉末。
4.3共沉淀法
将两种金属盐溶液按化学式计量混合,加入一定量的可溶性无机碱,如NaOH、KOH、NH3?H2O等作为沉淀剂,将所得沉淀过滤,用去离子水洗涤数次以后,将产物于高温下煅烧可得到最后产物。如以双羟基复合金属盐氧化物(LDH)为例,称取一定量的Mg(NO3)2?6H2O和Al(NO3)3?9H2O溶于一定量的去离子水中配成混合盐溶液,另称取一定量的NaOH和Na3CO3溶于一定量的去离子水中配成混合碱溶液。将两种溶液在全返混旋转液膜成核反应器中迅速混合,剧烈循环搅拌1min,将浆液于一定温度下晶化6h,过滤、洗涤、干燥得镁铝LDH。
5.纳米阻燃剂对饰面型防火涂料性能的改进
5.1提高涂料的抗老化性能
纳米TiO2、SiO2、ZnO、Fe2O3等粒子添加到涂层中,能明显提高涂料的抗老化性能。不同波长的紫外光下纳米粒子抗老化机理有所不同,如:StamatakisP.认为纳米TiO2衰减长波紫外线时,散射起主要作用:纳米TiO2衰减短波紫外线时,吸收起主要作用。而且衰减不同波长的紫外线,纳米粒子的最佳颗粒尺寸是不同的。并据文献报道,利用Laenick,Mitton,Weber公式可计算不同波长下TiO2散射紫外光的最佳粒径(如表1)。纳米粒子对紫外线屏蔽能力的评估方法有多种,如:紫外线透过率、吸收系数、紫外线当量衰减率以及太阳光防护效果的测定等。
表1 散射不同波长的光时水中分散的TiO2最佳粒径
波长/nm |
200 |
290 |
380 |
500 |
600 |
700 |
800 |
Laenick公式 |
0.09 |
0.132 |
0.173 |
0.228 |
0.274 |
0.319 |
0.365 |
Mitton公式 |
0.072 |
0.104 |
0.136 |
0.179 |
0.215 |
0.251 |
0.287 |
Weber公式 |
0.077 |
0.111 |
0.115 |
0.191 |
0.229 |
0.267 |
0.305 |
5.2作为涂料的增强材料
王雪松等利用导静电纳米金属氧化物颗粒,以水为分散介质,选用不同分散助剂和研磨工艺,制备了纳米级导静电水分散浆料。陈新州利用纳米材料作增强剂,用基料、体质颜料、助剂和去离子水研制了一种具有独特的光催化功能和自洁功能的水性复合型纳米涂料。李锡凯等选用D-M纯丙乳液,在外墙涂料加入纳米级TiO2、SiO2等粒子,提高了涂料的抗玷污能力。黄桂平在涂料中加入纳米级材料及成膜助剂等,通过高速搅拌,制得了一种韧性、耐老化、防水等性能均有提高的环保型外墙纳米涂料。李昌龙发明了一种水溶性环保纳米涂料,原材料主要采用了纳米材料,由纳米填料,纳米杀菌剂,纳米颜料配制而成,具有超强自洁、防菌、可有效降解室内有害物质等功能。
5.3对饰面型防火涂料进行修饰和表面包裹改性为了使纳米材料能很好地分散在水性介质中,而且具有长期稳定性,即在长期的贮存过程中不发生二次自聚集现象,科技工作者着手研究纳米材料的改性问题。国内外学者在纳米材料改性方面做了大量的工作,主要是加入分散剂和表面包裹剂对其表面进行修饰改性。张超灿等采用水溶性有机硅改性纳米SiO2水溶液,在硅烷偶联剂WD-30上接枝PEG大分子链,使亲油和亲水基团于一体,利用静电排斥和位阻效应解决了纳米SiO2的团聚现象,制成了水性纳米外墙涂料,大大提高了其耐玷污能力在纳米材料的表面包裹方面的研究中,Ohmori等借助正硅酸乙酯水解在Fe2O3表面均匀包覆了一层SiO2,有效地抑制了纳米Fe2O3的团聚。林玉兰等采用钛酸酯偶联剂、硅烷偶联剂对硅铝双层包覆后的亚微米TiO2进行了改性,使TiO2颗粒由亲水性变为疏水性。