阻燃防火材料-网上贸易平台 | | WAP浏览
服务热线:4006555305
当前位置: 首页 » 防火测试中心 » 各国标准法规 » 美国 » 正文

ASTM E2047光电阵列湿绝缘完整性试验的标准试验方法

放大字体  缩小字体 发布日期:2012-02-08   浏览次数:202  分享到: 分享到腾讯微博
ASTM E2047光电阵列湿绝缘完整性试验的标准试验方法
ASTM E2047  Standard Test Method for Wet Insulation Integrity Testing of Photovoltaic Arrays
ASTM E2047光电阵列湿绝缘完整性试验的标准试验方法
The design of a PV module or system intended to provide safe conversion of the sun's radiant energy into useful electricity must take into consideration the possibility of hazard should the user come into contact with the electrical potential of the array. In addition, the insulation system provides a barrier to electrochemical corrosion, and insulation flaws can result in increased corrosion and reliability problems. This test method describes a procedure for verifying that the design and construction of the array provides adequate electrical isolation through normal installation and use. At no location on the array should the PV-generated electrical potential be accessible, with the obvious exception of the output leads. The isolation is necessary to provide for safe and reliable installation, use, and service of the PV system.
This test method describes a procedure for determining the ability of the array to provide protection from electrical hazards. Its primary use is to find insulation flaws that could be dangerous to persons who may come into contact with the array. Corrective action taken to address such flaws is beyond the scope of this test method.
This procedure may be specified as part of a series of acceptance tests involving performance measurements and demonstration of functional requirements. Large arrays can be tested in smaller segments. The size of the array segment to be tested (called “circuit under test” in this test method) is usually selected at a convenient break point and sized such that the expected resistance or current reading is within the middle third of the meter's range.
Insulation leakage resistance and insulation leakage current leakage are strong functions of array dimensions, ambient relative humidity, absorbed water vapor, and other factors. For this reason, it is the responsibility of the user of this test method to specify the minimum acceptable leakage resistance for this test.
Even though a numerical quantity is specified, actual results are often pass-fail in that when a flaw is found, the leakage current changes from almost nothing to the full scale value on the meter.
The user of this test method must specify the option used for connection to the array during the test. The short-circuited option requires a shorting device with leads to connect the positive and negative legs of the circuit under test. For larger systems, where the shorting device may have to be rated for high current and voltage levels, the open-circuited option may be preferred. The open-circuited option requires the user to correct readings to account for the PV-generated voltage, and the procedure for making such corrections is beyond the scope of this test method. The short-circuited option may be easier for small systems where the voltage and current levels are low and the distance between the plus and minus leads of the circuit under test are small. The short-circuited option minimizes the chance of exposing array components to voltage levels above those for which they are rated.
1. Scope
1.1 This test method covers a procedure to determine the insulation resistance of a photovoltaic (PV) array (or its component strings), that is, the electrical resistance between the array's internal electrical components and is exposed, electrically conductive, non-current carrying parts and surfaces of the array.
1.2 This test method does not establish pass or fail levels. The determination of acceptable or unacceptable results is beyond the scope of this test method.
1.3 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.
1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

2. Referenced Documents (purchase separately)
ASTM Standards
E772 Terminology Relating to Solar Energy Conversion
E1328 Terminology Relating to Photovoltaic Solar Energy Conversion
E1462 Test Methods for Insulation Integrity and Ground Path Continuity of Photovoltaic Modules
Index Terms
electrical testing; insulation integrity; insulation resistance; photovoltaics; solar energy; Electrical performance--solar devices; Insulation resistance; Photovoltaic (PV) power systems; Solar energy; Wet insulation integrity;


  详情请咨询
  防火资源网-阻燃防火测试中心
  电话:(+86)0592-5056213
  传真:(+86)0592-5105807
  邮件:firetest@firetc.com

凡注明"防火资源网"的所有作品,由<防火资源网>整理编辑,任何组织未经<防火资源网>及其拥有者授权,不得复制、转载、摘编或利用其它方式应用于任何商业行为。

 
 
[ 防火测试中心搜索 ]  [ ]  [ 告诉好友 ]  [ 打印本文 ]  [ 关闭窗口 ]  [ 返回顶部 ]

 

 
 
推荐防火测试
推荐图文
点击排行
 
 
网站首页 | 广告服务 | 关于我们 | 联系方式 | 服务协议 | 版权声明 | 网站地图 | 友情链接 | 网站留言 | 旧版本 | 闽ICP备09009213号
©2019-2021 FIRETC.COM All Rights Reserved   备案号:闽ICP备09009213号-1在线客服 点击QQ交谈/留言 点击QQ交谈/留言