阻燃防火材料-网上贸易平台 | | WAP浏览
服务热线:4006555305
当前位置: 首页 » 防火测试中心 » 各国标准法规 » 美国 » 正文

ASTM D6097 固体介电绝缘材料中有通气孔的水柱提升的相关抗性的标准试验方法

放大字体  缩小字体 发布日期:2012-02-08   浏览次数:81  分享到: 分享到腾讯微博
ASTM D6097 固体介电绝缘材料中有通气孔的水柱提升的相关抗性的标准试验方法
ASTM D6097 Standard Test Method for Relative Resistance to Vented Water-Tree Growth in Solid Dielectric Insulating Materials
ASTM D6097  固体介电绝缘材料中有通气孔的水柱提升的相关抗性的标准试验方法

This is a laboratory test designed to simulate the growth of vented water-trees in the solid dielectric insulating material initiated by a sharp protrusion at the insulating and conductive interface under a wet environment in a high electrical field. Water-treeing is the phenomenon which describes the appearance of tree-like growth in organic dielectrics under an ac field when exposed to moist environments. Two types of water-trees are formed. Bow tie trees (within the dielectric) and vented water-trees formed from conductive/insulating material interface into the insulating material. The water-trees referred to in this test method are the vented type. The insulating material is the solid dielectric organic material. The conductive material is the salt solution. This salt solution is used on both sides of the insulating material to simulate the same inner and outer semiconductive shields saturated with moisture between the insulation layer used in a medium-voltage underground power cable.
This test method provides comparative data. The degree of correlation with the performance in service has not been established.
The standard test conditions are designed to grow a sufficient water-tree length for most solid dielectric insulating materials of interest before electrical breakdown occurs. Materials with a very high resistance to water-tree growth may require a longer time under test conditions (such as 180 days) or higher voltage (such as 10 or 15 kV) in order to differentiate their performance. For materials with a very low resistance to water-tree growth, electrical breakdown may occur during the 30-day testing time. A shorter testing time (such as one or ten days) is recommended to prevent electrical breakdown during testing for those low water-tree resistant materials.
Other voltages, frequencies, temperatures, aqueous solutions, and defects can be used to evaluate specific materials for specific applications. Temperatures should not exceed the softening or melting point of the material or 10 to 15°C below the boiling point of the salt solution. Any nonstandard conditions should be reported along with the results.
Tree-growth rates generally increase with the test frequency. An acceleration factor due to frequency is given by (f/60)k where f is the test frequency and k is between 0.6 and 0.7. The test frequency of 1 kHz is selected to accelerate the water-tree growth. However, the chemical nature of oxidized products from water-treeing may be different at different frequency ranges.
Two assumptions for this test method are: (1) all tested materials grow trees in the same power law kinetic manner and (2) the time under test conditions of 30 days is long enough to establish the difference in water-tree growth. If there is a doubt, at least three different testing times (such as 30, 90, and 180 days) should be used to verify their comparative performance and disclose their kinetic nature of water-tree growth. Of course, it is also assumed that all water-treed regions are oxidized regions that can be stained for optical observation. Different materials may also have different temperatures and times to stain the oxidized (treed) regions due to their different softening temperature.
1. Scope
1.1 This test method covers the relative resistance to vented water-tree growth in solid translucent thermoplastic or cross-linked electrical insulating materials. This test method is especially applicable to extruded polymeric insulation materials used in medium-voltage cables.
1.2 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.
1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitation prior to use. For specific hazard statements see 8.1.
1.4 There is no similar or equivalent IEC standard.

2. Referenced Documents (purchase separately)
ASTM Standards
D1898 Practice for Sampling of Plastics3
D1928 Practice for Preparation of Compression-Molded Polyethylene Test Sheets and Test Specimens
D2275 Test Method for Voltage Endurance of Solid Electrical Insulating Materials Subjected to Partial Discharges (Corona) on the Surface
D3756 Test Method for Evaluation of Resistance to Electrical Breakdown by Treeing in Solid Dielectric Materials Using Diverging Fields
Index Terms
electrical breakdown; solid dielectrics; treeing; water-treeing; Dielectric applications; Electrical breakdown; Extruded polymeric insulation; Solid dielectrics; Solid non-black thermoplastic/crosslinked electrical insulation; Treeing; Vented water-tree growth; Water-treeing;

  详情请咨询
  防火资源网-阻燃防火测试中心
  电话:(+86)0592-5056213
  传真:(+86)0592-5105807
  邮件:firetest@firetc.com

凡注明"防火资源网"的所有作品,由<防火资源网>整理编辑,任何组织未经<防火资源网>及其拥有者授权,不得复制、转载、摘编或利用其它方式应用于任何商业行为。

 
 
[ 防火测试中心搜索 ]  [ ]  [ 告诉好友 ]  [ 打印本文 ]  [ 关闭窗口 ]  [ 返回顶部 ]

 

 
 
推荐防火测试
推荐图文
点击排行
 
 
网站首页 | 广告服务 | 关于我们 | 联系方式 | 服务协议 | 版权声明 | 网站地图 | 友情链接 | 网站留言 | 旧版本 | 闽ICP备09009213号
©2012-2014 FIRETC.COM All Rights Reserved   在线客服 点击QQ交谈/留言 点击QQ交谈/留言