阻燃防火材料-网上贸易平台 | | WAP浏览
服务热线:4006555305
当前位置: 首页 » 防火测试中心 » 各国标准法规 » 美国 » 正文

ASTM D3426用脉冲波法测定固体电绝缘材料电介质击穿电压及抗电强度标准试验方法

放大字体  缩小字体 发布日期:2012-02-10   浏览次数:357  分享到: 分享到腾讯微博
ASTM D3426用脉冲波法测定固体电绝缘材料电介质击穿电压及抗电强度标准试验方法
ASTM D3426 Standard Test Method for Dielectric Breakdown Voltage and Dielectric Strength of Solid Electrical Insulating Materials Using Impulse Waves
ASTM D3426用脉冲波法测定固体电绝缘材料电介质击穿电压及抗电强度标准试验方法
Insulating materials used in high-voltage equipment may be subjected to transient voltage stresses, resulting from such causes as nearby lightning strokes. This is particularly true of apparatus such as transformers and switchgear used in electrical-power transmission and distribution systems. The ability of insulating materials to withstand these transient voltages is important in establishing the reliability of apparatus insulated with these materials.
Transient voltages caused by lightning may be of either positive or negative polarity. In a symmetrical field between identical electrodes, the polarity has no effect on the breakdown strength. However, with dissimilar electrodes there may be a pronounced polarity effect. It is common practice when using dissimilar electrodes, to make negative that electrode at which the higher gradient will appear. When asymmetrical electrodes are used for testing materials with which the tester has no previous experience or knowledge, it is recommended that he make comparative tests with positive polarity and negative polarity applied to the higher gradient, or smaller electrode, to determine which polarity produces the lower breakdown voltage.
The standard wave shape is a 1.2 by 50-μs wave, reaching peak voltage in approximately 1.2 μs and decaying to 50 % of peak voltage in approximately 50 μs after the beginning of the wave. This wave is intended to simulate a lightning stroke that may strike a system without causing failure on the system.
For most materials, the impulse dielectric strength will be higher than either its power frequency alternating voltage or its direct voltage dielectric strengths. Because of the short time involved, dielectric heating and other thermal effects are largely eliminated during impulse testing. Thus, the impulse test gives values closer to the intrinsic breakdown strength than do longer time tests. From comparisons of the impulse dielectric strength with the values obtained from longer time tests, inferences may be drawn as to the modes of failures under the various tests for a given material. Appendix X1 of Test Method D 149 should be referred to for further information on this subject.
1. Scope
1.1 This test method covers the determination of dielectric strength of solid electrical insulating materials under simulated-lightning impulse conditions.
1.2 Procedures are given for tests using standard 1.2 by 50 s full-wave impulses.
1.3 This test method is intended for use in determining the impulse dielectric strength of insulating materials, either using simple electrodes or functional models. It is not intended for use in impulse testing of apparatus.
1.4 This test method is similar to IEC Publication 243-3. All procedures in this test method are included in IEC 243-3. Differences between this test method and IEC 243-3 are largely editorial.
1.5 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use. Specific precaution statements are given in Section 9.

2. Referenced Documents (purchase separately)
ASTM Standards
D149 Test Method for Dielectric Breakdown Voltage and Dielectric Strength of Solid Electrical Insulating Materials at Commercial Power Frequencies
D374 Test Methods for Thickness of Solid Electrical Insulation
D2413 Test Methods for Preparation of Insulating Paper and Board Impregnated with a Liquid Dielectric
American National Standard
C68.1 Techniques for Dielectric Tests (IEEE Standard No. 4)
IEC Standard
Pub243-3 Methods of Test for Electric Strength of Solid Insulating Materials--Part 3: Additional Requirements for Impulse Tests
Index Terms
dielectric breakdown; dielectric breakdown criteria; dielectric breakdown voltage; dielectric strength; full-impulse-voltage wave; impulse dielectric strength; impulse generator; impulse waves; lightning strokes; peak value; simulated-lightning impulse; solid insulating material; virtual front time; virtual origin; virtual peak value; virtual time to half-value
 

  详情请咨询
  防火资源网-阻燃防火测试中心
  电话:(+86)0592-5056213
  传真:(+86)0592-5105807
  邮件:firetest@firetc.com

凡注明"防火资源网"的所有作品,由<防火资源网>整理编辑,任何组织未经<防火资源网>及其拥有者授权,不得复制、转载、摘编或利用其它方式应用于任何商业行为。

 
 
[ 防火测试中心搜索 ]  [ ]  [ 告诉好友 ]  [ 打印本文 ]  [ 关闭窗口 ]  [ 返回顶部 ]

 

 
 
推荐防火测试
推荐图文
点击排行
 
 
网站首页 | 广告服务 | 关于我们 | 联系方式 | 服务协议 | 版权声明 | 网站地图 | 友情链接 | 网站留言 | 旧版本 | 闽ICP备09009213号
©2019-2021 FIRETC.COM All Rights Reserved   备案号:闽ICP备09009213号-1在线客服 点击QQ交谈/留言 点击QQ交谈/留言