阻燃防火材料-网上贸易平台 | | WAP浏览
服务热线:4006555305
当前位置: 首页 » 防火测试中心 » 各国标准法规 » 美国 » 正文

ASTM D2885用在线直接比较技术测定火花点火式发动机燃料辛烷值的标准试验方法

放大字体  缩小字体 发布日期:2012-02-08   浏览次数:187  分享到: 分享到腾讯微博
ASTM D2885用在线直接比较技术测定火花点火式发动机燃料辛烷值的标准试验方法
ASTM D2885 Standard Test Method for Determination of Octane Number of Spark-Ignition Engine Fuels by On-Line Direct Comparison Technique
ASTM D2885用在线直接比较技术测定火花点火式发动机燃料辛烷值的标准试验方法

The delta octane number (ΔO.N.) measure can quantify the difference of in-line blended spark-ignition engine fuel or process stream material octane number to a desired octane number to aid in optimizing control of blender facilities or refinery process units.
The ΔO.N. measure, summed with a statistically sound comparison reference fuels O.N. provides either research or motor octane number value of the current in-line blended spark-ignition engine fuel or process stream material.
Through the use of cumulative flow-weighted averaging of the repetitive ΔO.N. results, a statistically significant octane number can be assigned to a tender or batch of in-line blended spark-ignition engine fuel.
1. Scope
1.1 This test method covers the quantitative online determination by direct comparison of the difference in knock rating or delta octane number of a stream sample of spark-ignition engine fuel from that of a comparison reference fuel.
1.2 This test method covers the methodology for obtaining an octane number using the measured delta octane number and the octane number of the comparison reference fuel.
1.3 The comparison reference fuel is required to be of essentially the same composition as the stream sample to be analyzed and can be a secondary fuel termed standard fuel or a tertiary fuel termed prototype fuel.
1.4 The test method utilizes a knock testing unit/automated analyzer system that incorporates computer control of a standardized single-cylinder, four-stroke cycle, variable compression ratio, carbureted, CFR engine with appropriate auxiliary equipment using either Test Method D2699 Research method or Test Method D2700 Motor method operating conditions.
1.4.1 Knock measurements are based on operation of both fuels at the specific fuel-air ratio that produces maximum knock intensity for that fuel.
1.4.2 Measured differences in knock intensity are scaled to provide a positive or negative delta octane number of the stream sample from the comparison reference fuel when the fuels are compared at the same compression ratio.
1.4.3 Measured differences in compression ratio are scaled to provide a positive or negative delta octane number of the stream sample from the comparison reference fuel when the fuels are compared at the same knock intensity.
1.5 This test method is limited to testing 78 to 102 octane number spark-ignition engine fuels using either research or motor method conditions.
1.6 The octane number difference between the stream sample and the applicable comparison reference fuel is self-limiting by specifications imposed upon the standard and prototype fuels.
1.7 Specifications for selection, preparation, storage, and dispensing of standard and prototype fuels are provided. Detailed procedures for determination of an appropriate assigned octane number for both standard and prototype fuels are also incorporated.
1.8 The values of operating conditions are stated in SI units and are considered standard. The values in parentheses are historical inch-pound units. The standardized CFR engine measurements continue to be expressed in inch-pound units only because of the extensive and expensive tooling that has been created for this equipment.
1.9 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use. For more specific warning statements, see Section 8 and Annex A1.

2. Referenced Documents (purchase separately)
ASTM Standards
D1193 Specification for Reagent Water
D2699 Test Method for Research Octane Number of Spark-Ignition Engine Fuel
D2700 Test Method for Motor Octane Number of Spark-Ignition Engine Fuel
D4057 Practice for Manual Sampling of Petroleum and Petroleum Products
D4175 Terminology Relating to Petroleum, Petroleum Products, and Lubricants
D4177 Practice for Automatic Sampling of Petroleum and Petroleum Products
D4814 Specification for Automotive Spark-Ignition Engine Fuel
D5842 Practice for Sampling and Handling of Fuels for Volatility Measurement
D6299 Practice for Applying Statistical Quality Assurance and Control Charting Techniques to Evaluate Analytical Measurement System Performance
D6300 Practice for Determination of Precision and Bias Data for Use in Test Methods for Petroleum Products and Lubricants
D6624 Practice for Determining a Flow-Proportioned Average Property Value (FPAPV) for a Collected Batch of Process Stream Material Using Stream Analyzer Data
D7453 Practice for Sampling of Petroleum Products for Analysis by Process Stream Analyzers and for Process Stream Analyzer System Validation
E177 Practice for Use of the Terms Precision and Bias in ASTM Test Methods
E456 Terminology Relating to Quality and Statistics
Waukesha CFR Engine Manuals
CFRF-1&F-2 Octane Rating Units Operation & Maintenance FORM 847
Index Terms
analytical measurement system; comparison reference fuel; delta octane number; stream sample fuel; Automotive engine fuels/oils; Automated procedures--petroleum products analysis; Check fuel; Delta octane number; Knock characteristics; Motor octane number (MON); Octane number/rating; Online monitoring; Product fuel; Prototype fuel; Research octane number; Standard fuel ;

  详情请咨询
  防火资源网-阻燃防火测试中心
  电话:(+86)0592-5056213
  传真:(+86)0592-5105807
  邮件:firetest@firetc.com

凡注明"防火资源网"的所有作品,由<防火资源网>整理编辑,任何组织未经<防火资源网>及其拥有者授权,不得复制、转载、摘编或利用其它方式应用于任何商业行为。

 
 
[ 防火测试中心搜索 ]  [ ]  [ 告诉好友 ]  [ 打印本文 ]  [ 关闭窗口 ]  [ 返回顶部 ]

 

 
 
推荐防火测试
推荐图文
点击排行
 
 
网站首页 | 广告服务 | 关于我们 | 联系方式 | 服务协议 | 版权声明 | 网站地图 | 友情链接 | 网站留言 | 旧版本 | 闽ICP备09009213号
©2019-2021 FIRETC.COM All Rights Reserved   备案号:闽ICP备09009213号-1在线客服 点击QQ交谈/留言 点击QQ交谈/留言